화학공학소재연구정보센터
Electrophoresis, Vol.28, No.4, 658-664, 2007
Analysis of electrokinetic transport of a spherical particle in a microchannel
Electrokinetically driven microfluidic devices that are used for biological cell/particle manipulation (e.g., cell sorting, separation) involve electrokinetic transport of these particles in microchannels whose dimension is comparable with particles' size. This paper presents an analytical study on electrokinetic transport of a charged spherical particle in a charged parallel-plate microchannel. Under the thin electric double-layer assumption, solutions in closed-form solutions for the particle velocity and disturbed electrical and fluid velocity fields are obtained for plane-symmetric (along the channel centerline) and asymmetric (off the channel centerline) motions of a sphere in a parallel-plate microchannel. The effects of relative particle size and eccentricity (i.e., off the centerline distance) on a particle's translational and rotational velocities are analyzed.