화학공학소재연구정보센터
Electrophoresis, Vol.27, No.24, 4910-4918, 2006
Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations
A novel method for the rapid fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips using poly(dimethylsiloxane) (PDMS) templates has been demonstrated. The PDMS molds were fabricated by soft lithography. The dense prepolymerized solution of methyl methacrylate containing thermal and UV initiators was allowed to polymerized between a PDMS template and a piece of a 1 mm thick commercial PMMA plate under a UV lamp. The images of microchannels on the PDMS template were precisely replicated into the synthesized PMMA substrates during the UV-initiated polymerization of the prepolymerized solution on the surface of the PMMA plate at room temperature. The polymerization could be completed within 10 min under ambient temperature. The chips were subsequently assembled by thermal bonding of the channel plate and the cover sheet. The new fabrication method obviates the need for specialized replication equipment and reduces the complexity of prototyping and manufacturing. Nearly 20 PMMA chips were replicated using a single PDMS mold. The attractive performance of the new microfluidic chips has been demonstrated by separating and detecting cations in connection with contactless conductivity detection. The fabricated PMMA microchip has also been successfully employed for the determination of potassium and sodium in environmental and biological samples.