Electrophoresis, Vol.26, No.18, 3468-3478, 2005
Two-dimensional separation system of coupling capillary liquid chromatography to capillary electrophoresis for analysis of Escherichia coli metabolites
A two-dimensional (2-D) separation system of coupling chromatography to electrophoresis was developed for profiling Escherichia coli metabolites. Capillary liquid chromatography (LC) with a monolithic silica-octaclecyl silica column (500 x 0.2 mm ID) was used as the first dimension, from which the effluent fractions were further analyzed by capillary electrophoresis (CE) acting as the second dimension. Field-enhanced stacking was selectively employed as a concentration strategy to interface the two dimensions, which proved to be beneficial for the detection of metabolites. An artificial sample containing 118 standards, some of which lack chromophores or have weak UV absorbance, was used to optimize the 2-D separation system. Under the optimum conditions, 63 components in the artificial sample having absorbance at 254 nm could be well resolved and detected. The utility of the system was demonstrated by comprehensive analysis of E coli metabolites. Comparing with the previous 2-D separation system we published in AnaL Chem. 2004, 76, 1419-1428, using a longer monolithic column in the first dimension improved the separation efficiency and offered the possibility of increasing the injection volume without compromising the separation efficiency. In the second dimension, field-enhanced stacking was used to improve the concentration sensitivity of the metabolites, and more metabolites in E coli cell extract were detected and identified using the developed 2-D separation system. In addition, preliminary investigation for future CE-mass spectrometry coupling was also made in the study by using volatile buffers in the capillary LC and CE techniques.
Keywords:capillary electrophoresis;capillary liquid chromatography;Escherichia coli;metabolome analysis;two-dimensional separation system