화학공학소재연구정보센터
Electrophoresis, Vol.26, No.10, 2005-2018, 2005
Polymethacrylate-type monoliths functionalized with chiral amino phosphonic acid-derived strong cation exchange moieties for enantioselective nonaqueous capillary electrochromatography and investigation of the chemical composition of the monolithic polymer
In situ prepared monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) (poly(GMA-co-EDMA)) capillary columns were activated to reactive thiol-monoliths and subsequently functionalized with (S)-N-(4-allyloxy-3,5-dichlorobenzoyl)-2-amino3,3-dimethylbutanephosphon ic acid as chiral selector by radical addition to afford enantioselective strong cation exchanger (SCX) capillary columns (100 μ m inner diameter (ID)). These monolithic capillaries were devised for the enantioseparation of chiral bases by nonaqueous and aqueous capillary electrochromatography (CEC) and the results obtained for mefloquine and its tert-butylcarbamate as test compounds were compared to those obtained with particulate silica-based analogs (packed columns). Despite abolishment of nonspecific ionic interactions between the cationic solutes and residual silanols that may diminish separation factors of the silica-based chiral SCX particles, the poly(GMA-co-EDMA)-supported SCX monolith did not, as expected, show better enantioselectivities, which was assumed to be due to detrimental nonspecific interactions between the analytes and the lipophilic polymer backbone. In order to minimize these unfavorable contributions, less lipophilic monoliths were developed by copolymerization of different amounts of the hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA) with GMA and EDMA, leading to GMA-co-HEMA-co-EDMA-terpolymeric monoliths. By this increase of the hydrophilicity of the monolithic support the enantioselectivity of the resultant SCX stationary phase could be enhanced and reached values comparable to the packed silica-based enantioselective SCX capillaries. Additionally, the mobile phase composition and other variables were examined and it could be shown that the separation factors are considerably affected by diverse parameters such as acetonitrile-methanol ratio and type and concentration of the counterion. Mefloquine enantiomers could be separated with a-values up to 1.56 and a maximum plate count of ca. 60 000 m(-1) could be achieved.