화학공학소재연구정보센터
Polymer(Korea), Vol.16, No.2, 152-159, March, 1992
셀룰라아제의 흡착에 미치는 셀룰로우스 결정성의 효과
Effects of the Crystallinity of Cellulose on the Properties of Cellulase Adsorption
초록
셀룰로오스에 대한 결정성을 요오드흡착량 (ISV). 퍼센트 결정성지수 (CrI) 및 상관결정성 지수 (Cc)로 나타내어 이들 값을 서로 비교하고, 셀룰로오스에 대한 셀룰라아제의 흡착친화력에 미치는 결정성 효과를 조사하였다. 사용한 셀룰로오스 중 Avicel PH-101, Sigmacell 100 및 Solka Floc BW-300 등은 전처리 없이 사용하였고, α-cellulose는 효소를 이용한 가수분해를 통하여 일정 시간 전처리한 후 회수하여 사용하였다. 실험결과로부터 전처리하지 않은 셀룰로오스의 CrI 값은 ISV와 상관관계가 있고, 전처리한 셀룰로오스의 경우에는 Cc값과 ISV가 상관관계가 큼을 알았다. 또한 Langmuir등온흡착식으로부터 셀룰라아제의 흡착파라미터를 얻었다. 이때 전처리된 기질의 경우, 셀룰로오스에 대한 셀룰라아제의 친화력이 기질의 Cc값 또는 ISV에 의존하였으나. 전처리 하지 않은 경우의 기질에 대해서는 매우 작은 의존성을 보여주었다.
In determining the crystallinity of cellulose, the three different methods were chosen. The parameters from each experiment i. e., the iodine sorption value (ISV) , the percent crystallinity index (CrI) and the correlation crystallinity index (Cc) , were correlated with each other to find relationships. The dependence of affinity on the crystallinity of cellulase was studied also. The cellulose samples used were Avicel PH-101, Sigmacell 100, Solka Floc BW-300 and α-celluose. Among them, α-cellulose was hydrolyzed in the presence of cellulase for various periods of time. The untreated cellolose samples showed a good linear relationship between the CrI and ISV. On the other hand, the pretreated α-cellulose residures showed a good correlation between the CrI and ISV rather than that between CrI and ISV. The affinity of cellulase to pretreated celluloses depended preferably on the values of Cc and ISV comparing with the negligible dependence on the crystallinity parameters of the untreated cellulose.
  1. Ladisch MR, Lin KW, Voloch M, Tsao GT, Enzyme Microb. Technol., 5(2), 82 (1983) 
  2. Fengel D, Wegener G, "Wood," Walter de Gruyter, New York (1984)
  3. Alexander LE, "X-ray Diffraction Methods in Polymer Science," John Wiley & Sons, New York (1969)
  4. Atalla RH, "The Structures of Cellulose," ACS Symposium Series 340 (1987)
  5. Wakelin JH, Virgin HS, Crystal E, J. Appl. Phys., 30, 1654 (1959) 
  6. Segal L, Creely JJ, Martin AE, Conrad CM, Text. Res. J., 29, 786 (1959)
  7. Hessler LE, Power RE, Text. Res. J., 23, 822 (1954)
  8. Reese ET, Segal L, Tripp VM, Text. Res. J., 27, 626 (1957)
  9. Nisizawa K, J. Ferment. Technol., 51, 262 (1973)
  10. Klyosov AA, Biochemistry, 29, 10577 (1990) 
  11. Lee SB, Shin HS, Ryu DDY, Mandels M, Biotechnol. Bioeng., 24, 2137 (1982) 
  12. Mandels M, Kostick J, Parizek R, J. Polym. Sci., 36, 445 (1971)
  13. Converse AO, Matsuno R, Tanaka M, Taniguchi M, Biotechnol. Bioeng., 32, 38 (1988) 
  14. Ooshima H, Sakata M, Harano Y, Biotechnol. Bioeng., 25, 3103 (1983) 
  15. Kim DW, Yang JH, Jeong YK, Appl. Microbiol. Biotechnol., 28, 148 (1988) 
  16. Fan LT, Lee YH, Beardmore DH, Biotechnol. Bioeng., 22, 177 (1980) 
  17. Focher B, Marzett A, Cattaneo M, Beitrame PL, Carniti P, J. Appl. Polym. Sci., 26, 1989 (1981) 
  18. Sasaki T, Tanaka T, Nanbu N, Sato Y, Kainuma K, Biotechnol. Bioeng., 21, 1031 (1971) 
  19. Lee SB, Kim IH, Ryu DDY, Taguchi H, Biotechnol. Bioeng., 25, 33 (1983) 
  20. Lowry OH, Rosebrough NJ, Farr AE, Randal RJ, J. Biol. Chem., 193, 265 (1951)
  21. Saafan AA, Kandil SH, Habib AM, Text. Res. J., 54, 863 (1984)
  22. Stuartand JY, Ristroph DL, Biotechnol. Bioeng., 27, 1056 (1985)