화학공학소재연구정보센터
Electrophoresis, Vol.25, No.6, 914-921, 2004
Ultraviolet sealing and poly(dimethylacrylamide) modification for poly(dimethylsiloxane)/glass microchips
Simple sealing methods for poly(dimethylsiloxane) (PDMS)/glass-based capillary electrophoresis (CE) microchips by UV irradiation are described. Further, we examined the possibility to modify the inner surface of separation channels, using polymethylacrylamide (PDMA) as a dynamic coating reagent. The surface properties of native PDMS, UV-irradiated PDMS, and PDMA-coated PDMS were systematically studied by atomic force microscopy (AFM), infrared absorption by attenuated total reflection infrared (ATR-IR) spectroscopy, and contact angle measurement. We found that PDMA forms a stable coating on PDMS and glass surfaces, eliminating the nonhomogeneous electroosmotic flow (EOF) in channels on PDMS/glass microchips, and improving the hydrophilicity of PDMS surfaces. Mixtures of flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and fluorescein were separated in 35 s using PDMA-coated PDMS/glass microchips. A high efficiency of theoretical plates with at. least 1365 (105 000 N/m) and a good reproducibility with relative standard deviations (RSD) below 4% in five successive separations were achieved.