화학공학소재연구정보센터
Polymer(Korea), Vol.16, No.1, 44-50, January, 1992
4-Methyl-1-Vinylnaphthalene과 Styrene의 양이온 공중합
Cationic Copolymerization of 4-Methyl-1-Vinylnaphthalene and Styrene
초록
4-Methyl-1-vinylnaphthalene(4-MeV1N)은 4-methyl-1-(1-naphthylethyl)chloride (4-MeN1EC)를 탈염소화 반응시켜 합성하였다. 4-MeN1EC는 1-methylnaphthalene을 출발물질로 하여 4-methyl-1-acetonaphthone, 4-methyl-1-(1-naphthyl)ethanol을 합성하고 4-methyl-1-(1-naphthyl)ethanol과 PCI5를 반응시켜 합성하였다. -7O℃, -5O℃, -25℃ 및 0℃에서 TiCl4를 개시제로 하여 4-MeV1N의 양이 온중합에 대한 전환률 그리고 pol(4-methyl-1-vinylnaphthalene)의 고유점도와 Tg를 구하였다. 4-MeV1N의 전환률과 얻어진 중합체의 고유점도 값은 온도가 증가할수록 감소하였으며 중합체의 Tg값은 148℃이었다. 또한, -50℃에서 TiC14를 사용하여 CH2Cl2에서 4-MeV1N과 styrene의 양이온 공중합반응에 대한 단량체반응성을 구하였다. 공중합체 조성은 UV spectroscopy를 사용하여 구하였으며, Kelen-T d s식에 의해 구한 단량체 반응성비 값은 rl(4-MeV1N)=4.00이고 r2(styrene) = 1.75이었다.
4-Methyl-1-vinylnaphthalene (4-MeV1N) was synthesized by the dehydrochlorination of 4-methyl-1-(1-naphthylethyl)chloride, which had been prepared from 1-methylnaphthalene through the formation of intermediates, 4-methyl-1-acetonaphthone and 4-methyl-1-(1-naphthyl) ethanol. Cationic homopolymerization of 4-MeV1N was carried out with titanium tetrachloride as a catalyst in dichloromethane at four different temperatures, ranging from -70℃ to 0℃. The conversion and the intrinsic viscosity were increased as the temperature decreased. The observed glass transition temperature of the homopolymer was 148℃. Copolymerization of 4-MeV1N and styrene was also carried out at -50℃ under the same experimental condition. The copolymer composition was determined by UV spectroscopy. The reactivity ratios of 4-MeV1N and styrene were estimated as rl(4-MeV1N)=4.00 and r2(St)=1.75, respectively, by the Kelen-T d s method.
  1. Brunovollmert B, "Polymer Chemistry," Springer Verlag, New York, p. 44 (1973)
  2. Jenkins AD, Ledwith A, "Reactivity, Mechanism and Structure in Polymer Chemistry," John Wiley & Sons, p. 16 (1974)
  3. Dainton FS, Sutherland GBBM, J. Polym. Sci., 4, 37 (1949) 
  4. Kennedy JP, Thomas RM, J. Polym. Sci. A: Polym. Chem., A1, 331 (1963)
  5. Imanishi Y, Imamura H, Higashimura T, Kobunshi Kagaku, 27, 247 (1970)
  6. Imamura H, Higashimura T, Okamura S, J. Polym. Sci. A: Polym. Chem., 3, 2455 (1965)
  7. Okamura S, Higashimura T, Imanishi Y, Yamamoto R, Kimira K, J. Polym. Sci. C: Polym. Lett., 16, 2365 (1967)
  8. Marechal E, Bull. Soc. Chim. Fr., 268C, 1121 (1969)
  9. Zaffran C, Marechal E, Bull. Soc. Chim. Fr., 3521 (1971)
  10. Tortai J, Marechal E, Bull. Soc. Chim. Fr., 2673 (1971)
  11. Anton A, Marechal E, Bull. Soc. Chim. Fr., 3772 (1971)
  12. Zweggers J, Marechal E, Bull. Soc. Chim. Fr., 1157 (1972)
  13. Yuki H, Hadata K, Takeshita M, J. Polym. Sci. A: Polym. Chem., 1, 667 (1969)
  14. Overberger CG, Kamath VG, J. Am. Chem. Soc., 85, 446 (1963) 
  15. Overberger CG, Amold LH, Taylor JJ, J. Am. Chem. Soc., 73, 5541 (1951) 
  16. Overberger CG, Ehring RJ, Tanner D, J. Am. Chem. Soc., 76, 772 (1954) 
  17. Anton A, Marechal E, Bull. Soc. Chim. Fr., 268C, 3753 (1971)
  18. Monomura Y, Mitch M, Macromol. Chem., 86, 119 (1968) 
  19. Marechal E, Bit C, Sigwalt P, Bull. Soc. Chim. Fr., 11, 3487 (1966)
  20. Cho WJ, Ph.D. Thesis, The University of Paris VI (1978)
  21. Cho WJ, Bunnel CB, Marechal E, J. Polym. Sci., 18, 1991 (1980)
  22. Oh ST, Lee H, Cho WJ, Polym.(Korea), 10(7), 699 (1986)
  23. Ivin KJ, Spensley RH, J. Macromol. Sci.-Chem., 1, 653 (1967)
  24. Kovacs AJ, J. Polym. Sci., 30, 131 (1958) 
  25. Martin GM, Rogers SS, Mandelkern L, J. Polym. Sci., 20, 579 (1956) 
  26. Dunhan KR, Faber JW, Vandenberghe J, Fowler WF, J. Appl. Polym. Sci., 7, 897 (1963) 
  27. Davies TE, Br. Plast., 32, 283 (1959)
  28. Frosini V, Magagnini PL, Eur. Polym. J., 2, 129 (1968)
  29. Corrado LC, J. Chem. Phys., 50, 2260 (1969) 
  30. Kang DP, Ha CS, Cho WJ, J. Polym. Sci. A: Polym. Chem., 27, 1401 (1989) 
  31. Price CC, Halpern BD, Voong ST, J. Polym. Sci., 6, 575 (1953)
  32. Meehan EJ, J. Polym. Sci. A: Polym. Chem., 1, 175 (1946)
  33. Kelen T, Tudos F, J. Macromol. Sci.-Chem., 9, 1 (1975)