Electrophoresis, Vol.23, No.11, 1618-1627, 2002
Effect of class I and II organic modifiers on retention and selectivity in vesicle electrokinetic chromatography
Vesicles are large aggregates of surfactant monomers consisting of a spherical bilayer surrounding an internal cavity of solvent. The bilayer structure allows vesicles to be attractive models for the study of various transmembrane and binding processes. The use of thermodynamically stable vesicles (TSV) formed from oppositely charged surfactants for use as a pseudostationary phase in electrokinetic chromatography (EKC) was first accomplished using dodecyltrimethylammonium bromide and sodium dodecyl sulfate (DTAB/SDS). Surfactant vesicles have demonstrated enhanced separation characteristics compared to conventional micelles in EKC, although only investigated in aqueous media. Organic modifiers have been widely studied and used in EKC to enhance separation conditions. In this study, vesicles formed from cetyltrimethylammonium bromide and sodium octyl sulfate (CTAB/SOS) were investigated in the presence of "class I and II" organic modifiers. Electrophoretic and chromatographic parameters were examined as well as linear solvation energy relationship analysis (LSER) to characterize the effects of the modifiers on retention and selectivity in EKC. LSER analysis is a useful way to quantitatively investigate solute/solvent interactions responsible for retention and selectivity.