화학공학소재연구정보센터
Polymer(Korea), Vol.16, No.1, 1-7, January, 1992
CuxS가 도입된 Acrylonitrile-Vinylphosphate공증합체의 합성과 전기 전도도에 관한 연구
Studies on the Electrical Conductivity and Synthesis of Acrylonitrile-Vinylphosphate Copolymer Introduced CuxS
초록
본 연구는 전도성 고분자 착물을 합성하여 착물의 구조 및 최적 착물 형성 조건과 전기전도도를 규명하였다. AN-VP-Cu(II)와 A-AN-VP-Cu(II)착물은 pH 11 영역에서 가장 잘 형성됨을 알았으며, Cu(II) 이온이나 CuχS를 도입한 필름의 전기전도도는 반도체 영역임을 알았다. 또한 CU(II) 이온 보다는 CuχS를 도입한 경우가 더욱 높은 전기전도도를 나타냄을 알았다. 그리고 Cu(II)이온이나 CuχS를 도입한 AN-VP, A-AN-VP는 각각 110℃와 70℃에서 최대 전기전도도 값을 나타냈으며 아미드옥심기를 가지는 공중합체가 더욱 높은 전기전도도 값을 나타냈다. 한편 DSC분석 결과 CuχS-A-AN-VP가 CuχS-AN-VP 보다 Tm 값이 15℃정도 낮게 나타났다. 착물의 표면 구조는 전자현미경 사진으로 관찰되었는데 착물이 형성됨에 따라 더욱 compact해진 것으로 보아 공중합체에 CuχS가 도입되었음을 확인하였다.
Conducting polymer complexes were synthesized and their structure, optimum formation conditions and electrical conductivity were examined. We have found that both samples, AN-VP-Cu(II) and A-AN-VP-Cu(II) form complex in pH 11 range very well. Electrical conductivity of Cu(II) or CuχS composite films is in the range of semiconductors. The electrical conductivity of CuχS composite film is higher than that of Cu(II) composite film and AN-VP and A-AN-VP with Cu(II) ion or CuχS have maximum electrical conductivity at 110℃ and 70℃, respectively. Copolymer with amidoxime group showed higher electrical conductivity than copolymer without amidoxime group. In the results of DSC, the melting temperature of CuχS-A-AN-VP was 15℃ lower than that of CuχS-AN-VP. The morphology of complex was also investigated by SEM. It could be conformed that CuχS has been introduced into both AN-VP and A-AN-VP from the change of surface structure, which was more compact with increasing the degree of complex formation.
  1. Park YW, Heeger AJ, Druy MA, J. Chem. Phys., 73, 946 (1981) 
  2. Clarke TC, Street GB, Synth. Met., 1, 119 (1980) 
  3. Chung TC, Feldblem A, Heeger AJ, MacDiarimid AG, J. Chem. Phys., 74, 5504 (1981) 
  4. Shacklette LW, J. Chem. Phys., 73, 4098 (1980) 
  5. Street GB, Clarke TC, Geiss RH, Polymer, 23(1), 117 (1982)
  6. Nout R, Flank AJ, Nozik AJ, J. Am. Chem. Soc., 103, 1849 (1981) 
  7. Flan AJ, Honda K, Polymer, 23(1), 135 (1982)
  8. Little WA, Phys. Rev., A, 135(6), 1416 (1964)
  9. Little WA, J. Polym. Rev., 17, 3 (1967)
  10. Higasi F, Cho CS, Kakinoki H, J. Polym. Sci. A: Polym. Chem., 15, 2303 (1977)
  11. Tomobi S, Gomibuchi R, Takahashi K, U.S. Patent, 4,378,226 (1983)
  12. Chaney DW, U.S. Patent, 2,537,031 (1951)
  13. Daul GC, Reid JD, Reinhardt RM, Ind. Eng. Chem., 46, 1042 (1954) 
  14. Okamoto J, Sugo T, Katakai A, Omichi H, J. Appl. Polym. Sci. Polym. Sci., 30(2), 967 (1985)
  15. Robert GC, Reihardt M, Ind. Eng. Chem., 46(1), 403 (1960)
  16. Araya K, 日本高分子學會誌, 35, 136 (1986)
  17. Tomobi S, Gomibuchi R, Takahashi K, U.S. Patent, 4,378,226 (1983)
  18. Okoniewaki M, Koprrow J, Ledakowicz JS, Polymer, 110, 244 (1981)
  19. Magat EE, Tanner D, U.S. Patent, 3,413,378 (1968)
  20. Im SS, Kim DK, Noh ST, Kang EY, Jeon DW, Polym.(Korea), 14(3), 257 (1990)
  21. Engelken RD, McCloud HE, J. Electrochem. Soc., 32, 568 (1985)