Current Microbiology, Vol.36, No.6, 353-360, 1998
The characteristics of arylamine N-acetyltransferase in Pseudomonas aeruginosa
N-Acetyltransferase (NAT), responsible for bioactivation and detoxification of arylamines, has been demonstrated to be widely distributed in many organisms ranging from humans to microorganisms. Using high performance liquid chromatography (HPLC) to analyze NAT activity in bacteria, the authors found that Pseudomonas aeruginosa exhibited high NAT activity with 2-aminofluorene (2-AF) as substrate. Characteristics of this bacterial NAT were further investigated. The N-acetylation catalyzed by this enzyme is an acetyl coenzyme A (AcCoA)-dependent reaction. As the concentration of AcCoA in the reaction mixture was increased, the apparent K-m and V-max for 2-AF increased. The K-m and V-max were 0.504 +/- 0.056 mM and 31.92 +/- 3.23 nmol/min/mg protein, respectively, for the acetylation of 2-AF with 0.5 mM AcCoA. The optimum pH for the enzyme activity was estimated to be around 8.5. It was active at a temperature range from 5 degrees C to 55 degrees C, with maximum activity at 37 degrees C. The enzyme activity was inhibited by divalent metal ions including Cu++, Fe++, Zn++, Ca++, Co++, Mn++, and Mg++, suggesting that a sulfhydryl group is involved in the N-acetylation activity. The three chemical modification agents, iodoacetamide, phenylglyoxal, and diethylpyrocarbonate, all exhibited a dose-, time-, and temperature-dependent inhibition effect. Preincubation of the NAT with AcCoA provided significant protection against the inhibition of iodoacetamide and diethylpyrocarbonate, but only partial protection against the inhibition of phenylglyoxal. These results indicate that cysteine, histidine, and arginine residues are essential for this bacterial enzyme activity, and the first two are likely to reside on the AcCoA binding site, but arginine residue may be located only near the AcCoA binding site. Our data demonstrate that P. aeruginosa possesses highly active N-acetyltransferase which shares a similar catalytic mechanism as that of higher organisms. These findings are very helpful for further investigating the role of arylamine NAT in this bacterial species.