화학공학소재연구정보센터
Biomacromolecules, Vol.7, No.5, 1665-1670, 2006
Synthesis of copolymers containing an active ester of methacrylic acid by RAFT: Controlled molecular weight scaffolds for biofunctionalization
We report the controlled radical copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with a monomer containing an active ester, N-methacryloyloxysuccinimide (NMS), by reversible addition fragmentation chain transfer (RAFT). The large difference in the reactivity ratios of HPMA and NMS resulted in significant variations in copolymer composition with increasing conversion during batch copolymerization. The use of a semi-batch copolymerization method, involving the gradual addition of the more reactive NMS, allowed uniformity of copolymer composition to be maintained during the polymerization. We synthesized polymers in a wide range of molecular weights (M-n = 3000 - 50 000 Da) with low polydispersities (1.1 - 1.3). The effect of the ratio of monomer to chain transfer agent (CTA) on the molecular weight of the polymer was investigated. Given the numerous applications of poly(HPMA)-based conjugates in designing polymeric therapeutics, these controlled molecular weight activated polymers represent attractive scaffolds for biofunctionalization. As a demonstration, we attached a peptide to the activated polymer backbone to synthesize a potent controlled molecular weight polyvalent inhibitor of anthrax toxin.