Biomacromolecules, Vol.6, No.3, 1782-1788, 2005
Multilayers of a globular protein and a weak polyacid: Role of polyacid ionization in growth and decomposition in salt solutions
Thin films obtained from a layer-by-layer deposition of a weak polycarboxylic acid and a positively charged globular protein were studied by in situ ATR-FTIR. The system was chicken egg lysozyme (Lys), bovine pancrease ribonuclease A (RNase), or bovine γ-globulin (IgG) self-assembled with polycarboxylic acids. When the pH value was lowered below a critical point, the growth of films and their tolerance to decomposition by added sodium chloride improved dramatically. Stabilization of protein/polyacid films in salt solutions at lower pH values occurred due to the onset of nonelectrostatic interactions to intermolecular binding within protein/polyacid multilayers and was controlled by polyacid ionization within the film rather than the pH of the external solution. A fractional ionization of polyacid in the pH-stabilization region was lower with protein -containing films than for polyacid/linear polycation films, reflecting hindrance of the inter-association of protonated carboxylic groups by protein globules. Practical ramifications of the pH-stabilization effect might extend to areas of biotechnology and biomaterials.