Biomacromolecules, Vol.5, No.5, 2065-2072, 2004
Shear characteristics, miscibility, and topography of sodium caseinate-monoglyceride mixed films at the air-water interface
In this contribution, we are concerned with the study of structure, topography, and surface rheological characteristics (under shear conditions) of mixed sodium caseinate and monoglycerides (monopalmitin and monoolein) at the air/water interface. Combined surface chemistry (surface film balance and surface shear rheometry) and microscopy (Brewster angle microscopy, BAM) techniques have been applied in this study to mixtures of insoluble lipids and sodium caseinate spread at the air-water interface. At a macroscopic level, sodium caseinate and monoglycerides form an heterogeneous and practically immiscible monolayer at the air-water interface. The images from BAM show segregated protein and monoglyceride domains that have different topography. At surface pressures higher than that for the sodium caseinate collapse, this protein is displaced from the interface by monoglycerides. These results and those derived from interfacial shear rheology (at a macroscopic level) appear to support the idea that immiscibility and heterogeneity of these emulsifiers at the interface have important repercussions on the shear characteristics of the mixed films, with the alternating flow of segregated monoglyceride domains (of low surface shear viscosity, eta(s)) and protein domains (of high eta(s)) across the canal.