Biomacromolecules, Vol.5, No.1, 97-105, 2004
Size and structure characterization of ethylhydroxyethyl cellulose by the combination of field-flow fractionation with other techniques. Investigation of ultralarge components
Ethylhydroxyethyl cellulose (EHEC) of three different viscosity classes (EHEC I, II, and III) was analyzed by programmed cross-flow asymmetrical flow field-flow fractionation coupled to multiangle light scattering and refractive index detectors to determine their size and molar mass distribution. Two size populations were detected in the two lower viscosity classes, EHEC I and II, one high molar mass and one ultrahigh molar mass (UHM). The two covered molar masses from 10(4) up to 10(9) g.mol(-1). The highest viscosity class EHEC III was less size-dispersed covering molar masses from 5x10(5) to 5x10(7) g.mol(-1). Filtering of the EHEC II solution removed small amounts of compact UHM material. Enzyme treatments were performed on EHEC II to further characterize it. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and anion ion-exchange chromatography coupled to pulsed amperometric detection showed that the UHM component contained EHEC.