Biomacromolecules, Vol.4, No.2, 378-386, 2003
Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules
We report the development of new biomacromolecule coatings on biodegradable biomaterials based on electrostatic assembly of extracellular matrix-like molecules. Poly(ethylene imine) (PEI) was employed to engineer poly(DL-lactide) (PDL-LA) substrate to obtain a stable positively charged surface. An extracellular matrix- (ECM-) like biomacromolecule, gelatin, was selected as the polyelectrolyte to deposit on the activated PDL-LA substrate via the electrostatic assemble technique. The extracellular matrix-like multilayer on the PDL-LA substrate was investigated by attenuated total reflection (ATR-FTIR), X-ray photoelectron spectrscopy (XPS), contact angle, and atomic force microscopy (AFM). The gradual buildup of the protein layer was investigated by UV-vis spectra, and it was further given a quantitative analysis of the protein layer on the PDL-LA substrate via the radioiodination technique. The stability of the protein layer under aqueous condition was also tested by the radiolabeling method. Chondrocyte was selected as the model system for testing the cell behavior and morphology on modified PDL-LA substrates. The chondrocyte test about cell attachment, proliferation, cell activity and cell morphology by SEM, and confocal laser scanning microscopy (CLSM) investigation on extracellular matrix-like multilayer modified PDL-LA substrate was shown to promote chondrocyte attachment and growth. Comparing conventional coating methods, polyelectrolyte multiplayers are easy and stable to prepare. It may be a good choice for the modification of 3-D scaffolds used in tissue engineering. These very flexible systems allow broad medical applications for drug delivery and tissue engineering.