Biomacromolecules, Vol.4, No.1, 38-45, 2003
Biosynthesis and local sequence specific degradation of poly(3-hydroxyvalerate-co-4-hydroxybutyrate) in Hydrogenophaga pseudoflava
A novel copolymer that consisted of 3-hydroxyvalerate and 4-hydroxybutyrate, P(3HV-co-4HB), was synthesized in Hydrogenophaga pseudoflava by growing it in media containing gamma-valerolactone and gamma-butyrolactone as a carbon source. The monomer ratio in the copolymer was changed by altering the feed ratio of the two lactones. The cultivation technique was composed of three steps: the first-step for high cell production in Luria-Bertani medium, the second-step for intracellular degrading removal of poly(3-hydroxybutyrate) (P(3HB)), which was formed in the first step, by culturing the cells in carbon-source-free medium, and the final step for accumulation of P(3HV-co-4HB) in a mixed lactone medium. All the P(3HV-co-4HB) copolymers contained less than 1 mol % of 3HB unit. These copolymers were characterized by NMR spectroscopy, differential scanning calorimetry, wide-angle X-ray diffraction, and first-order kinetic analysis of intracellular degradation. The copolymer with an approximately equal ratio of the comonomers was found amorphous. The NMR microstructural analysis showed that the copolymers contained appreciable amounts of 3HV-rich or 4HB-rich chains. The C-13 NMR splitting patterns associated with the four carbons in the 4HB unit of P(3HV-co-4HB) bear close resemblance to those observed in the 4HB unit of P(3HB-co-4HB). The signals arising from the carbons in the 3HV unit of P(3HV-co-4HB) split in a manner similar to those in the 3HB unit of P(3HB-co-4HB). Thus the sequences were assigned by comparing the NMR splittings for P(3HV-co-4HB) with those for P(3HB-co-4HB) and P(3HB-co-3HV). The sequence assignment was further checked by comparing the signal intensities before and after degradation of the copolymers. This was considered reasonable because the H. pseudoflava intracellular PHA depolymerase is more specific to the 3HV unit than to the 4HB unit, which was also confirmed by the higher degradation rate constant for the 3HV unit in the first-order kinetic analysis.