Biochemical and Biophysical Research Communications, Vol.305, No.1, 28-36, 2003
Genomic overview of serine proteases
Serine proteases (SP) are peptidases with a uniquely activated serine residue in the substrate-binding pocket. They represent about 0.6% of all proteins in the human genome. SP are involved in many vital functions such as digestion, blood clotting, fibrinolysis, fertilization, and complement activation and are related to many diseases including cancer, arthritis, and emphysema. In this study, we performed a genomic analysis of human serine proteases utilizing different databases, primarily that of MEROPS. SP are distributed along all human chromosomes except 18 and Y with the highest density (23 genes) on chromosome 19. They are either randomly located within the genome or occur in clusters. We identified a number of SP clusters, the largest being the kallikrein cluster on chromosome 19q13.4 which is formed of 15 adjacent genes. Other clusters are located on chromosomes 19p13, 16p13, 14q11, 13q35, 11q22, and 7q35. Genes of each cluster tend to be of comparable sizes and to be transcribed in the same direction. The members of some clusters are sometimes functionally related, e.g., the involvement of many kallikreins in endocrine-related malignancies and the hematopoietic cluster on chromosome 14. It is hypothesized that members of some clusters are under common regulatory mechanisms and might be involved in cascade enzymatic pathways. Several functional domains are found in SP, which reflect their functional diversity. Membrane-type SP tend to cluster in 3 chromosomes and have some common structural domains. Several databases are available for screening, structural and functional analysis of serine proteases. With the near completion of the Human Genome Project, research will be more focused on the interactions between SP and their involvement in pathophysiological processes. (C) 2003 Elsevier Science (USA). All rights reserved.
Keywords:serine proteases;kallikreins;MEROPS;evolution;phylogenetic analysis;gene clusters;protein domains;mapping;human genome project