Biochemical and Biophysical Research Communications, Vol.297, No.5, 1264-1269, 2002
Phosphatase inhibition leads to activation of I kappa B kinase in murine macrophages
We have been interested in elucidating the role of intracellular phosphatase activity in the regulation of immune cell activation. To this end, we treated RAW 264.7 murine macrophages with the phosphatase inhibitor, calyculin-A. Treatment with calyculin-A led to activation Of IkappaB kinase, degradation of IkappaBalpha, and induced nuclear translocation and DNA binding of NF-kappaB. Each of these effects occurred in both a time- and dose-dependent manner. In addition, each of these effects were negatively modulated by prior induction of the heat-shock response. Despite clear activation of the IkappaB kinase/IkappaBalpha/NF-kappaB pathway, however, phosphatase inhibition did not lead to increased expression of NF-kappaB-dependent genes. Thus, intracellular phosphatase activity is a central regulator of the NF-kappaB signal transduction pathway and is negatively modulated by heat shock. Inhibition of intracellular phosphatase activity with calyculin-A is not sufficient to induce NF-kappaB-dependent gene expression, demonstrating the complexity of NF-kappaB regulation in immune cells. (C) 2002 Elsevier Science (USA). All rights reserved.