Biochemical and Biophysical Research Communications, Vol.294, No.2, 245-248, 2002
A role for mitochondria as potential regulators of cellular life span
We demonstrate that by simply raising extracellular pyruvate levels, and hence increasing metabolic supply, human diploid fibroblasts undergo a concentration-dependent induction of cellular senescence. Fibroblasts treated with pyruvate undergo a rapid growth arrest accompanied by elevated levels of the cell-cycle regulatory molecules p53, p21, and p16. These cells also exhibit arise in mitochondrial oxidant production and a fall in intracellular glutathione levels. Exposure of pyruvate treated cells to the antioxidant and glutathione precursor N-acetylcysteine restores cell growth and reverses the increase in senescence-associated beta-galactosidase activity. Similarly, we demonstrate that by increasing mitochondrial number via retroviral-mediated expression of the mitochondrial biogenesis regulator PGC-1 there is also a reduction in cell growth and the more rapid induction of senescence. These results suggest that mitochondria appear to play a central role in regulating cellular life span. (C) 2002 Published by Elsevier Science (USA).