Biochemical and Biophysical Research Communications, Vol.291, No.3, 663-668, 2002
Regulation of cyclic AMP-dependent response element-binding protein (CREB) by the nociceptin/orphanin FQ in human dopaminergic SH-SY5Y cells
Nociceptin/orphanin FQ (N/OFQ), an endogenous ligand for opioid receptor-like (ORL1) receptor, transduces signaling cascades implicated in MAPK, PKC, PLC, and calcium, etc. This study was designed to investigate the intracellular signaling mechanism of N/OFQ in human dopaminergic neuroblastoma SHSY5Y cells. N/OFQ rapidly induced the phosphorylation of CREB, which was significantly suppressed by pretreatment of PKA inhibitor, but not by MAPK inhibitors. It also time-dependently increased the phosphorylation of MAPK, which was proven as ERKs, whereas it did not affect the PI3K activity. Interestingly, KT5720, a specific inhibitor of PKA, markedly suppressed the phosphorylation of MAPK by N/OFQ in SH-SY5Y cells. Furthermore, BAPTA-AM, an intracellular chelator of Ca2+, completely abolished the phosphorylation of CREB as well as MAPK in N/OFQ-treated SH-SY5Y cells. Taken together, these results suggest that N/OFQ independently induces the activation of CREB prior to MAPK phosphorylation, which was also modulated by PKA. Furthermore, Ca2+-related signaling implicates in the phosphorylation processes of CREB and MAPK simultaneously. (C) 2002 Elsevier Science (USA).