화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.284, No.4, 887-899, 2001
Cloning and molecular characterization of two splice variants of a new putative member of the Siglec-3-like subgroup of Siglecs
The sialic acid binding immunoglobulin-like lectin (Siglec) family is a recently described member of the immunoglobulin superfamily. Within this Siglec family there exists a subgroup of molecules which bear a very high degree of homology with the molecule Siglec-3 (CD33), and has thus been designated the Siglec-3-like subgroup of Siglecs. The members of this subgroup have been localized to chromosome 19q13.4, through both in situ hybridization and precise genomic mapping at the nucleotide level. Through the positional cloning approach we have identified and characterized a Siglec-like gene (SLG), a putative novel member of the Siglec-3-like subgroup of Siglecs. We have characterized the complete genomic structure of SLC:, as well as two alternative splice variants, and determined its chromosomal localization. The short isoform, SLG-S, consists of seven exons, with six intervening introns, while the longer isoform, SLG-L, consists of eight exons and seven intervening introns. The SLG gene is localized 32.9 kb downstream of Siglec-8 on chromosome 19q13.4. The putative SLG-S and SLG-L proteins, of 477 and 595 amino acid residues, respectively, show extensive homology to many members of the Siglec-3-like subgroup. This high degree of homology is conserved in the extracellular Ig-like domains, as well as in the cytoplasmic tyrosine-based motifs. Interestingly, the SLG-L protein contains two N-terminal V-set Ig-like domains, as opposed to SLG-S and other Siglec-3-like subgroup members which contain only one such domain. Through RT-PCR we have examined the expression profile of both SLG; splice variants in a panel of human tissues and have found that SLG-S is highly expressed in spleen, small intestine and adrenal gland, while SLG-L exhibits high levels of expression in spleen, small intestine, and bone marrow. This gene is quite likely the latest novel member of the CD33-like subgroup of Siglecs, and given its high degree of homology, it may also serve a regulatory role in the proliferation and survival of a particular hematopoietic stem cell lineage, as has been found for CD33 and Siglec7.