Biochemical and Biophysical Research Communications, Vol.272, No.3, 895-899, 2000
Temperature dependence of force, velocity, and processivity of single kinesin molecules
Using the bead assay in optical microscopy equipped with optical tweezers, we have examined the effect of temperature on the gliding velocity, force, and processivity of single kinesin molecules interacting with a microtubule between 15 and 35 degrees C. The gliding velocity increased with the Arrhenius activation energy of 50 kJ/mol, consistent with the temperature dependence of the microtubule-dependent ATPase activity. Also, the average run length, i.e., a measure of processivity of kinesin, increased on increasing temperature. On the other hand, the generated force was independent of temperature, 7.34 +/- 0.33 pN (average +/- S.D., n = 70). The gliding velocities decreased almost linearly with an increase in force irrespective of temperature, implying that the efficiency of mechanochemical energy conversion is maintained constant in this temperature range. Th us, we suggest that the force generation is attributable to the temperature-insensitive nucleotide-binding state(s) and/or conformational change(s) of kinesin-microtubule complex, whereas the gliding velocity is determined by the ATPase rate.
Keywords:kinesin;microtubule;motor proteins;processivity;temperature effect;single molecule analysis;force generation;gliding velocity;Arrhenius activation energy