화학공학소재연구정보센터
Polymer(Korea), Vol.14, No.1, 30-40, February, 1990
제조 조건에 따른 Polysulfone 중공사막의 구조 및 투과특성에 관한 연구
The Structure and Permeation Properties of Polysulfone Hollow Fiber Membranes Prepared by Various Spinning Conditions
초록
건습식 방사법에 의한 polysulfone 중공사의 제조에 있어 주요 변수인 방사 원액의 조성, 방사 높이, 방사 온도 및 응고액 등을 변화시켜 이에 따른 중공사의 구조 및 투과 특성을 조사하였다. 사용된 방사 용액은 polysulfone (Udel P-3500), N, N-dimethyl acetamide, polyethyleneglycol (분자량: 600)으로 부성되어 있으며, 투과액은 분자량이 1000에서 35000사이의 polyethyleneglycol을 2000ppm수용액으로 만들어 사용하였다 방사 조건에 따라 단일지상 구조에서 이중지상구조의 중공사막을 제조할 수 있었다. 제조된 중공사막은 분획 분자량이 12000에서 35000 범위의 값을 얻었으며, 투수성은 3기압에서 1-83×10-3㎤/min ㎠의 범위 에 있었다.
The structures and permeation properties of the polysulfone hollow fiber membranes prepared by dry-wet spinning method were investigated. Spinning solution was composed of polysulfone (Udel P-3500), N, N-dimethylacetamide and polyethylene glycol (molecular weight: 600). The aqueous polyethylene glycol solution with the molecular weight of from 1000 to 35000 was used for the permeation test. The effects of the composition of spinning solution, spinning height, spinning temperature and coagulants on the structures and permeation properties of hollow fibers were studied as main factors. Hollow fibers with a single or double finger structures have the MWCO ranged from 12000 to 35000 by changing the preparation conditions. At 3 atm, water fluxes of these membranes were at the range of 1-83×10-3㎤/min ㎠.
  1. U.S. Patent, 3,724,672
  2. U.S. Patent, 3,691,068
  3. Lloyd DR, "Materials Science of Synthetic Membranes," ACS Symp. 269, pp. 131-228 Washington, D.C. (1985)
  4. Bungay PM, Lonsdale HK, dePinho MN, "Synthetic Membranes: Science, Engineering and Applications," NATO ASI Series, pp. 1-56 (1986)
  5. Strathmann H, Desalination, 16, 179 (1971) 
  6. Smolders CA, J. Polym. Sci. B: Polym. Phys., 22, 519 (1984)
  7. Smolders CA, J. Appl. Polym. Sci., 30, 2805 (1988) 
  8. Kesting RE, "Synthetic Polymeric Membranes," 2nd ed., Chap. 7, John Wiley & Sons, Inc. (1985)
  9. Japan Patent, 49-23183
  10. Japan Patent, 54-10282
  11. Japan Patent, 57-56512
  12. Japan Patent, 57-147488
  13. Japan Patent, 61-101208
  14. Japan Patent, 61-103504
  15. U.S. Patent, 4,157,960
  16. U.S. Patent, 4,214,020
  17. Cabasso I, Klein E, Smith JK, J. Appl. Polym. Sci., 20, 2377 (1976) 
  18. Cabasso I, Klain E, Smith JK, J. Appl. Polym. Sci., 21, 165 (1977) 
  19. Lee KH, Kim JH, 다공성 중공사막의 제조 및 모듈 제작에 관한 연구, 85-159, I-0204-88, 한국화학연구소 (1988)
  20. Kwon TM, Lee SH, Kim JJ, Kim UY, HWAHAK KONGHAK, 26(3), 304 (1988)
  21. U.S. Patent, 3,397,427
  22. Cooper AR, "Ultrafiltration Membranes and Applications," 59 Washington, D.C. (1979)
  23. Japan Patent, 59-228016
  24. Japan Patent, 59-228017
  25. Japan Patent, 9-21721
  26. European Patent, 0121911
  27. Wijmans JG, Baaij JPB, Smolders CA, J. Membr. Sci., 14, 23 (1983) 
  28. Japan Patent, 57-35906