Biochemical and Biophysical Research Communications, Vol.345, No.3, 1177-1183, 2006
IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells
Insulin-like growth factors (IGFs) are known to be key regulators of bone growth, remodeling, and repair. Since all these processes depend on the recruitment of cells with the potential to be committed to the osteoblastic lineage, we studied possible effects of IGF-I and -II on migration of human mesenchymal progenitor cells (MPC) using a modified Boyden chamber assay. The results were compared to those of primary osteoblasts and in vitro-osteogenic-differentiated MPC. IGF-I and -II stimulated cell migration of all these cell populations in a dose-dependent manner from 1 to 100 ng/mL. The maximal chemotactic index (CI) was 4-5 for MPC and primary osteoblasts and about 3 for in vitro-differentiated MPC. Checkerboard analysis revealed that IGFs stimulated true directed cell migration (chemotaxis) and not simply chemokinesis. Addition of an antibody against the type I IGF receptor (alpha IR3) completely abolished (MPC) or markedly reduced (primary osteoblasts) the chemotactic effects of each of the IGFs. IGFBP-3 itself had no direct effect, while IGFBP-5 stimulated MPC migration at concentrations of 80 and 160 ng/mL. Parallel application of IGFBP-3 had borderline inhibitory effects while the addition of 40 ng/mL of IGFBP-5 enhanced the chemotactic effect of IGF-I on MPC. In conclusion, our results show that IGF-I and -II are chemotactic factors for MPC and indicate that IGFBP-5 both modulates the IGF-I effect and directly stimulates migration of human mesenchymal progenitor cells. (c) 2006 Elsevier Inc. All rights reserved.
Keywords:chemotaxis;insulin-like growth factor (IGF);cell migration;human mesenchymal progenitor cells;IGF receptor type I;IGFBP3;IGFBP5