Biochemical and Biophysical Research Communications, Vol.340, No.2, 457-461, 2006
Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase
Mutations in Cu/Zn superoxide dismutase (SOD) are involved in some cases of familial amyotrophic lateral sclerosis, and it appears that misfolding and aggregation, perhaps mediated by abnormal binding or loss of copper (Cu) and/or zinc (Zn), may play a pathological role. It is known that the absence of both metals kinetically destabilizes wild type and mutant SOD leading to a 60-fold increase in their rate of unfolding. Here, the individual contributions of Cu and Zn to the kinetic stability of SOD were investigated, and the results show that Cu plays a greater role. Thus, the deficiency of Cu or Zn, especially the former, will compromise the kinetic stability of SOD, thereby increasing the probability that pathogenic mutants and even the WT protein may misfold and self-assemble into toxic species. (c) 2005 Elsevier Inc. All rights reserved.