화학공학소재연구정보센터
Experimental Heat Transfer, Vol.17, No.3, 227-241, 2004
Thermal conductivity of graphitic carbon foams
Carbon foams are being developed as a new class of thermal management materials. These foams are produced with a wide variety of thermo-mechanical properties; however, very few studies of the properties of carbon foams have been reported in literature. This article reports on an experimental study that was conducted to determine the thermal conductivity of various forms of graphitic carbon foam by using the flash diffusivity and guarded hot plate method to reduce errors introduced by porous specimen, the test samples were vacuum infiltrated with epoxy. The thermal diffusivity results from the flash diffusivity instrument were used to determine the thermal conductivity of the samples. Some foam samples were determined to have large variations in thermal properties within the sample block. A theoretical and numerical model has been used to examine the effect of the filler epoxy on the experimental results and the influence of pore characteristics on the thermal conductivity of these foams. It was determined that accurate measurement of thermal properties of graphitic foam samples requires careful selection of sample size and measurement technique.