- Previous Article
- Next Article
- Table of Contents
Macromolecular Rapid Communications, Vol.23, No.18, 1067-1093, 2002
Kinetic study and new applications of UV radiation curing
Highly crosslinked polymers can be readily synthesized by photoinitiated polymerization of multi-functional monomers or functionalized polymers. The reaction can be followed in situ by real-time infrared (RT-IR) spectroscopy, a technique that records conversion versus time curves in photosensitive resins undergoing ultrafast polymerization UV-curing proceeds with long kinetic chains (7700 mol/radical) in spite of the high initiation rate. RT-IR spectroscopy proved very valuable in assessing the influence of various parameters, such as initiation efficiency, chemical structure of the telechelic oligomer, light intensity, inhibitory effect of oxygen, on polymerization kinetics. Interpenetrating polymer networks can be rapidly synthesized by means of UV irradiation of a mixture of disfunctional acrylate and epoxy monomers in the presence of both radical and cationic-type photoinitiators. The same UV technology can be applied to crosslink solid polymers at ambient temperature, which bear different types of reactive groups (acrylate and vinyl double bonds, epoxy ring). UV radiation curing has been successfully ued to produce within seconds weathering resistant protective coatings, high-resolution relief images, glass laminates and nanocomposites materials.
Keywords:crosslinking;infrared spectroscopy;interpenetrating polymer networks (IPN);nanocomposites;photopolymerization