Applied Surface Science, Vol.181, No.3-4, 283-295, 2001
Development of a technique to prevent radiation damage of chromate conversion coatings during X-ray photoelectron spectroscopic analysis
Photoreduction of hydrated sodium dichromate in the presence of carbon compounds has been studied by X-ray photoelectron spectroscopy (XPS). XPS results show that sodium dichromate also undergoes thermal breakdown during analysis. The photochemical and thermal reduction appears to be prevented by cooling with liquid nitrogen and using hydrocarbon-free vacuum pumping conditions. A model for the photoreduction of dichromate has been put forward based on an earlier photoreduction model developed by this group. Using the insight gained from this work, chromium spectra obtained from XPS of chromate conversion coatings (CCCs) on AA2024-T3 aluminum alloy have for the first time been fitted with six species of chromium compounds. The Cr 2p spectra have been critically examined for photoreduction of the hexavalent species: tetravalent and trivalent decomposition products have been identified. To explain the observed photochemical breakdown in CCCs even when performed under clean pumping conditions and liquid nitrogen cooling, its has been verified that the reduction is partly due to the cyanide species present in the CCCs. Cooling with liquid nitrogen prevents the adsorbed water on the coating from reacting with Cr(IV) to form trivalent species as the water molecules are immobilized and kinetics are slowed. As the Cr(VI)/Cr(III) ratio is critical to the performance of the CCC, and its accurate determination by XPS has not formerly been possible due to the photoreduction of Cr(VI) to Cr(III), we present a reliable method by which XPS can be used in characterization of chromate conversion coatings.
Keywords:chromate conversion coating;hexavalent chromium;photochemical;reduction;X-ray photoelectron spectroscopy