화학공학소재연구정보센터
Applied Surface Science, Vol.174, No.1, 70-85, 2001
Determination of the inelastic mean free path of electrons in polythiophenes using elastic peak electron spectroscopy method
The inelastic mean free path (IMFP) is an important parameter for quantitative surface characterisation by Auger electron spectroscopy, X-ray photoelectron spectroscopy or electron energy loss spectroscopy. An extensive database of the IMFPs for selected elements, inorganic and organic compounds has been recently published by Powell and Jablonski. As it follows from this compilation, the published material on IMFPs for conductive polymers is very limited, Selected polymers, such as polyacetylenes and polyanilines, have been investigated only recently. The present study is a continuation of the research on IMFPs determination in conductive polymers using the elastic peak electron spectroscopy (EPES) method. In the present study three polythiophene samples have been studied using high energy resolution spectrometer and two standards: Ni and Ag. The resulting experimental IMFPs are compared to the respective IMFP values determined using the predictive formulae proposed by Tanuma and Powell (TPP-2M) and by Gries (G1), showing a good agreement. The scatter between the experimental and predicted IMFPs in polythiophenes is evaluated. The statistical and systematic errors, their sources and the possible contributions to the systematic error due to influence of the accuracy of the input parameters, such as the surface composition and density, on the IMFPs derived from the experiments and Monte Carlo calculations, are extensively discussed.