화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.90, No.1, 295-297, 2007
Selection of TiN as the interconnect material for measuring the electrical conductivity of polymer-derived SiCN at high temperatures
Three transition metals, Ni, Mo, and Ti, were reacted with SiCN at high temperatures, and the reaction products characterized by X-ray diffraction. It was concluded that TiN is the most suitable interconnect material for the measurement of the electrical conductivity of SiCN at temperatures up to 1400 degrees C. The TiN interconnects were produced by an in situ process on H-shape specimens of SiCN, with an appropriate correction factor (which was obtained by finite-element analysis) for the four-point measurement of the electrical resistance. The process consisted of placing a small drop of a slurry constituted from liquid Ceraset (TM) (the precursor for SiCN) and Ti metal powder (50 wt%) on the contact point. The droplet was photo-cured and pyrolyzed. The TiN interconnect was generated during the pyrolysis. Finally, as an example, the measurement of the conductivity of a SiCNO sample up to 1300 degrees C is reported. A more complete study of the relationship between the conductivity and the composition of SiCNO will be reported separately.