화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.83, No.2, 277-280, 2000
Effects of solids loading, pH, and polyelectrolyte addition on the stabilization of concentrated aqueous BaTiO3 suspensions
Colloidal stability of concentrated aqueous BaTiO3 suspensions with ammonium salts of poly(acrylic acid) (PAA-NH4) and poly(methacrylic acid) (PMAA-NH4) as a function of pH and solids loading is investigated. For suspensions with solids loading less than 40 vol%, the required polyelectrolyte concentration to stabilize aqueous BaTiO3 suspensions decreases with increasing pH, but remains relatively unchanged with increasing solids loading. As the solids loading continuously increases (e.g., >50 vol%), the required amount of polyelectrolyte increases, but exhibits a minimum at pH approximate to 9.2. The critical amount of polyelectrolyte needed to achieve colloidal stability of aqueous BaTiO3 suspensions as a function of pH and solids loading is summarized in a three-dimensional stability map.