Journal of Hazardous Materials, Vol.76, No.2-3, 159-192, 2000
Field studies of the leachability of aged brown coal ash
The environmental management of ash produced from the brown coal Fewer stations of the Latrobe Valley region of Australia has been studied. Current practice consists of slurrying fly and bottom ash, a short distance to an ash disposal pond. However, storage facilities are approaching capacity and alternative ash management strategies are required in the near future. Initially, the ash produced within the power stations is known to possess a large soluble mass, which can leach rapidly to generate a saline leachate with minor trace metal content. After slurrying and deposition within the ash pond, it has been demonstrated that the soluble mass is significantly lower and the ash can be considered as aged or "leached" ash - a more benign waste that meets the criteria for fill material. In order to assess the lung-term behaviour of the leached ash and its suitability for co-disposal in engineered sites within overburden dumps, two field cells were constructed and monitored over a period of 1 year. Each cell was 5 X 5 m in area, 3-m deep and HDPE lined with a coarse drainage layer and leachate collection pipe, The first cell only collected natural rainfall and was known as the Dry Cell. The second cell had an external tank of 5000 1 installed (200-mm rainfall equivalent) and water was spray-irrigated regularly to simulate higher rainfall and accelerate the leaching process. The cumulative inflow and outflow for each cell has been calculated using a linear relationship and the leachate quality was monitored over time. The results demonstrate that the ash behaves as an unsaturated porous material, with the effect of evaporation through the profile being dominant and controlling the production of leachate. The leachate quality was initially moderately saline in both cells, with the concentration dropping by nearly 95% in the Wet Cell by the end of the field study. The leachate chemistry has been analysed using the PHREEQC geochemical model. The log activity plots of various species suggest the mineralogical controls on these species in leachate. The full results from this study are presented.