Journal of Molecular Catalysis A-Chemical, Vol.238, No.1-2, 127-134, 2005
Relevance of the Co1-xNixWO4 wolframite-type mixed oxide compositions on the synthesis and catalytic properties of W-based carbides
A series of wolframite-type oxides (Co1-xNixWO4) with various compositions was prepared by urea-matrix combustion method and subsequently carburized using a temperature-programmed reaction (I degrees C min(-1)) under a mixture of 10 vol.% C2H6/H-2, from room temperature to 700 degrees C, to obtain a mixed Co, Ni and W carbide catalysts. The catalytic performance was evaluated in a continuous flow reactor using hydrodenitrogenation of pyridine as model reaction. The wolframite-type oxides and the carbide catalysts pre- and post-HDN reaction were characterized using elemental analysis, X-ray diffraction (XRD), laser Raman spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetric (DSC), transmission electron microscopy (TEM) and BET surface area measurements. Urea-matrix combustion method is a convenient tool to prepare highly pure wolframite-type oxides, whose composition affects strongly the W-based carbide phase distribution and the HDN catalytic behaviour. At Ni compositions lower than Co contents the formation of Co3W3C and beta-W2C carbides is favoured, whereas at Ni compositions greater than those of Co the main phases were Ni and alpha-WC. At intermediate composition (CO0.5Ni0.5WCx) bimetallic and monometallic carbides were formed. The CoWCx bimetallic catalyst showed greater activity in the steady state than Ni-containing catalysts. The HDN active phase present in CoWCx is different than that present in the Ni-containing catalysts, that is, carbon-metal bond strength of the bimetallic carbide, for the former, and metal nickel or weak Ni-C bond, for the latter, play a very important role in the catalytic process. (c) 2005 Elsevier B.V. All rights reserved.
Keywords:wolframite-type mixed oxides;carbide characterization;Co and Ni-containing W-based carbides;pyridine-hydrodenitrogenation reaction