화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.129, No.24, 7570-7577, 2007
Cocktails of Tb3+ and Eu3+ complexes: A general platform for the design of ratiometric optical probes
Fluorescent and luminescent reporters that signal molecular events of interest by modulating the ratio of peaks in their emission profile have advantages over reporters that simply modulate their emission intensity, since ratiometric measurement is concentration-independent and allows them to be effective in complex contexts, such as living cells or sensor microarrays. We herein describe a general platform for the design of ratiometric probes based on a heterometallic Tb3+/Eu3+ bis-lanthanide ensemble, consisting of a mixture, or "cocktail", of otherwise identical heterometalated chelates. The chelate contains an organic photon antenna that sensitizes the Tb3+/Eu3+ luminescence. The contributions of the two metals to the composite luminescence spectrum can be tuned to the same relative scale by adjusting the stoichiometry of the cocktail, allowing subtle changes in their ratio to be accurately measured. Importantly, the ratio responds to chemical and environmental changes experienced by the photon antenna, making the system an ideal platform for the design of chemical and enzymatic probes. As proofs of concept, we describe a ratiometric probe for esterase activity and a polarity-responsive ratiometric sensor.