Journal of Structural Biology, Vol.154, No.2, 206-216, 2006
Structural organization of the perimysium in bovine skeletal muscle: Junctional plates and associated intracellular subdomains
We analyzed the structural features of the perimysium collagen network in bovine Flexor carpi radialis muscle using various sample preparation methods and microscopy techniques. We first observed by scanning electron microscopy that perimysium formed a regular network of collagen fibers with three hierarchical levels including (i) a loose lattice of large interwoven fibers ramified ill (ii) numerous collagen plexi attaching together adjacent myofibers at the level of (iii) specific structures that we call perimysial junctional plates. Second, we looked more closely at the intracellular organization underneath each plate using transmission electron microscopy, immunohistochemistry, and a three-dimensional reconstruction from serial sections. We observed the accumulation of myonuclei arranged in clusters surrounded by a high density of subsarcolemmal mitochondria and the proximity of capillary branches. Third, we analyzed the distribution of these perimysial junctional plates, subsarcolemmal mitochondria, and myonuclei clusters along the myofibers using a statistical analysis of the distances between these structures. This revealed a global colocalization and the existence of adhesion domains between endomysium and perimysium. Taken together, our observations give a better description of the perimysium organization ill skeletal muscle, and provide evidence that perimysial junctional plates with associated intracellular subdomains may participate ill the lateral transmission of contractile forces as well as mechanosensing. (c) 2006 Elsevier Inc. All rights reserved.