Journal of Structural Biology, Vol.144, No.3, 262-270, 2003
Cellulose orientation at the surface of the Arabidopsis seedling. Implications for the biomechanics in plant development
In diffuse growing cells the orientation of cellulose fibrils determines mechanical anisotropy in the cell wall and hence also the direction of plant and organ growth. This paper reports on the mean or net orientation of cellulose fibrils in the outer epidermal wall of the whole Arabidopsis plant. This outer epidermal wall is considered as the growth-limiting boundary between plant and environment. In the root a net transverse orientation of the cellulose fibrils occurs in the elongation zone, while net random and longitudinal orientations are found in subsequent older parts of the differentiation zone. The position and the size of the transverse zone is related with root growth rate. In the shoot the net orientation of cellulose fibrils is transverse in the elongating apical part of the hypocotyl, and longitudinal in the fully elongated basal part. Leaf primordia and very young leaves have a transverse orientation. Throughout further development the leaf epidermis builds a very complex pattern of cells with a random orientation and cells with a transverse or a longitudinal orientation of the cellulose fibrils. The patterns of net cellulose orientation correlate well with the cylindrical growth of roots and shoots and with the typical planar growth of the leaf blade. On both the shoot and the root surface very specific patterns of cellulose orientation occur at sites of specific cell differentiation: trichome-socket cells complexes on the shoot and root hairs on the root. (C) 2003 Elsevier Inc. All rights reserved.