Journal of Structural Biology, Vol.129, No.2-3, 218-222, 2000
Atomic force microscopy of the cell nucleus
In mammals and plants, the cell nucleus is organized in dynamic macromolecular domains involved in DNA and RNA metabolism. These domains can be visualized by light and electron microscopy and their composition analyzed by using several cytochemical approaches. They are composed of chromatin or ribonucleoprotein structures as interchromatin and perichromatin fibers and granules, coiled bodies, and nuclear bodies. In plants, DNA arrangement defines chromocentric and reticulated nuclei. We used atomic force microscopy to study the in situ structure of the plant cell nucleus. Samples of the plants Lacandonia schismatica and Ginkgo biloba were prepared as for electron microscopy and unstained semithin sections were mounted on glass slides. For comparison, we also examined entire normal rat kidney cells using the same approach, Samples were scanned with an atomic force microscope working in contact mode. Recognizable images of the nuclear envelope, pores, chromatin, and nucleolus were observed. Reticulated chromatin was observed in L. schismatica. Different textures in the nucleolus of G. biloba were also observed, suggesting the presence of nucleolar subcompartments. The observation of nuclear structure in situ with the atomic force microscope offers a new approach for the analysis of this organelle at high resolution.