Journal of Structural Biology, Vol.128, No.1, 98-105, 1999
Expression, two-dimensional crystallization, and electron cryo-crystallography of recombinant gap junction membrane channels
We used electron cryo-microscopy and image analysis to examine frozen-hydrated, two-dimensional (2D) crystals of a recombinant, 30-kDa C-terminal truncation mutant of the cardiac gap junction channel formed by 43-kDa alpha(1) connexin. To our knowledge this is the first example of a structural analysis of a membrane protein that has been accomplished using microgram amounts of starting material. The recombinant alpha(1) connexin was expressed in a stably transfected line of baby hamster kidney cells and spontaneously assembled gap junction plaques. Detergent. treatment with Tween 20 and 1,2-diheptanoyl-sn-phosphocholine resulted in well-ordered 2D crystals. A three-dimensional density (3D) map with an in-plane resolution of similar to 7.5 Angstrom revealed that each hexameric connexon was formed by 24 closely packed rods of density, consistent with an alpha-helical conformation for the four transmembrane domains of each connexin subunit. In the extracellular gap the aqueous channel was bounded by a continuous wall of protein that formed a tight electrical and chemical seal to exclude exchange of substances with the extracellular milieu
Keywords:alpha(1) connexin;connexin43;gap junctions;intercellular communication;integral membrane proteins;electron cryo-microscopy;image analysis