화학공학소재연구정보센터
Journal of Structural Biology, Vol.118, No.3, 236-242, 1997
Rational design of complex formation between plasminogen activator inhibitor-1 and its target proteinases
Considerable progress in understanding the mechanism of inhibition of proteinases by serpins has been obtained from different biochemical studies. These studies reveal that stable serpin/proteinase complex formation involves insertion of the reactive-site loop of the serpin and occurs at the acyI-enzyme stage, Even though no three-dimensional structure of a serpin/proteinase complex is resolved, structural information is available on some of the individual compounds. Molecular modeling techniques combined with recently acquired biochemical/biophysical data were used to provide insight into the stable complex formation between plasminogen activator inhibitor-1 (PAI-1) and the target proteinases: tissue-type plasminogen activator, urokinase-type plasminogen activator, and thrombin., This study reveals that PAI-1 initially interacts with its target proteinase when its reactive-site loop is solvent exposed and thereby accessible for the proteinase. Stable complex formation, however, involves the insertion of the reactive-site loop up to P7 and results in a tight binding geometry between PAI-1 and its target proteinase. The influence of different biologically relevant molecules on PAI-1/proteinase complex formation and the differences in inhibition rate constants observed for the different proteinases can be explained from these models. (C) 1997 Academic Press.