Journal of Power Sources, Vol.167, No.1, 118-129, 2007
Engineering model of a passive planar air breathing fuel cell cathode
The behavior of an air breathing fuel cell (ABFC) operated on dry-hydrogen in dead-ended mode is studied using theoretical analysis. A one-dimensional, non-isothermal, combined heat and mass transport model is developed that captures the coupling between water generation, oxygen consumption, self-heating and natural convection at the air breathing cathode. The model is validated against planar ABFC experimental measurements over a range of ambient temperatures. The model confirms the strong effect of self-heating on the water balance within passive ABFCs. Model analysis provides several conclusions: (1) thermal runaway caused by inadequate heat rejection predominantly limits ABFC performance. (2) The natural convection boundary layer represents a significant barrier to cathode mass and heat transfer. (3) Because the mass and heat transport numbers associated with natural convection are small, even slight forced convection dramatically affects cell behavior. (4) Performance optimization requires maximizing heat rejection while minimizing flooding. Decoupling the latter two phenomena is challenging due to the exponential relationship between water vapor saturation and temperature. (C) 2007 Elsevier B.V. All rights reserved.