화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.16, 4026-4035, 2007
Electronic and molecular structures of trigonal truxene-core systems conjugated to peripheral fluorene branches. Spectroscopic and theoretical study
An analysis is performed on the molecular and electronic features in a series of trigonal molecules constituted by a central truxene core which is ramified with three oligofluorene moieties of different lengths. Arms and core are studied independently and upon threefold unification. Special emphasis is paid to the modulation of the conjugational properties in relation to substitution, molecular dimension, ring aromaticity, intermolecular forces, oxidation state, etc. Raman and optical absorption/emission spectroscopies in conjunction with computational theoretical results are combined for this purpose. The evolution of some key intensity ratios in the Raman spectra (i.e., I-1300/I-1235) is followed as an indication of electronic interaction between the core and the branches. The changes of the electronic delocalization upon solvation, with varying temperature in the solid state, with the nature of the aromatic unit (bithiophene/fluorene) or after electrochemical oxidation are interpreted. The modulation of the optical properties on the basis of the structure and energetics of the orbital around the gap is also addressed. Density functional theory was used to assign the vibrational and electronic spectra.