화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.14, 3651-3657, 2007
Salting-out effect induced by temperature cycling on a water/nonionic surfactant/oil system
This paper presents original effects induced by temperature cycling on the transitional phase inversion of emulsions, stabilized by a nonionic polyethoxylated C18E6 surfactant model. The phase inversion follow-up is performed by electrical conductivity measurements, which involves focusing the study on the shape and location of the emulsion inversion region. In that way, new observations are brought out as a gradual evolution of the emulsion inversion along the cycling process. Two alternative approaches are considered for tackling these results: (i) first, a molecular approach regarding the particular organization and rearrangement of water clusters surrounding the surfactant polymer polar head, and (ii) second, a thermodynamic approach only considering the whole Gibbs free energy of the system. The volumic approaches are transposed, here, to the water/oil interface, and disclose that the phase inversion zone is included in a metastable region, able to stabilize for a given temperature, either metastable O/W emulsions or stable W/O ones. In that way, this study proposes novel and complementary insights into the phenomena governing the emulsion phase inversion.