화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.111, No.19, 3922-3931, 2007
Ab initio G3-type/statistical theory study of the formation of indene in combustion flames. I. Pathways involving benzene and phenyl radical
Ab initio G3(MP2,CC)//B3LYP calculations of the potential energy surface (PES) for the formation of indene involving hydrocarbon species abundant in combustion, including benzene, phenyl, propargyl, and methyl radicals, and acetylene, have been performed to investigate the build-up of an additional cyclopenta moiety over the existing six-member aromatic ring. They were followed by statistical calculations of high-pressure-limit thermal rate constants in the temperature range of 300-3000 K for all reaction steps utilizing conventional Rice-Ramsperger-Kassel-Marcus (RRKM) and transition-state (TST) theories. The hydrogen abstraction acetylene addition (HACA) type mechanism, which involves the formation of benzyl radical followed by addition of acetylene, is shown to have low barriers (12-16 kcal/mol) and to be a viable candidate to account for indene formation in combustion flames, such as the 1,3-butadiene flame, where this mechanism was earlier suggested as the major indene formation route (Granata et al. Combust. Flame 2002, 131, 273). The mechanism of indene formation involving the addition of propargyl radical to benzene and rearrangements on the C9H9 PES is demonstrated to have higher barriers for all reaction steps as compared to an alternative pathway, which starts from the recombination of phenyl and propargyl radicals and then proceeds by activation of the C9H8 adducts by H abstraction or elimination followed by five-member ring closure in C9H7 and H addition to the 2-indenyl radical. The suggested pathways represent potentially important contributors to the formation of indene in combustion flames, and the computed rate constants can be utilized in kinetic simulations of the reaction mechanisms leading to indene and to higher cyclopentafused polycyclic aromatic hydrocarbons (CP-PAH).