Journal of Materials Science, Vol.42, No.9, 3197-3206, 2007
Laboratory studies on stripping at bitumen/substrate interfaces using FTIR-ATR
A technique based on Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (FTIR-ATR) was developed and used to study movement of water into bitumen/substrate interfaces, as well as to characterize stripping. Bitumens from different sources were used and applied on various substrates (silicon, germanium and zinc selenide) as thin films. The influence of bitumen type, substrate type, temperature, film thickness and modification with amines, on water damage was studied. The technique gave information on water flow into interfaces and how stripping possibly occurs. It distinguished between stripping and non-stripping bitumens. At least one of three processes occurred, namely water diffusion, film fracture, and bitumen displacement by water, respectively. The diffusion of water did not obey Fick's law. Stripping was influenced by bitumen source when silicon and germanium substrates were used. Notching the films made the process of water entry almost occur immediately. Additives significantly reduced stripping in the moisture-sensitive bitumen on silicon and germanium substrates, even after film notching. Although, good agreement was observed between tests for the bitumens that did not strip, the tests on stripping bitumens showed poor agreement.