화학공학소재연구정보센터
Combustion and Flame, Vol.149, No.3, 261-270, 2007
Experimental study and chemical analysis of n-heptane homogeneous charge compression ignition combustion with port injection of reaction inhibitors
The control of ignition timing in the homogeneous charge compression ignition (HCCI) of n-heptane by port injection of reaction inhibitors was studied in a single-cylinder engine. Four suppression additives, methanol, ethancl, isopropanol, and methyl tert-butyl ether (MTBE), were used in the experiments. The effectiveness of inhibition of HCCI combustion with various additives was compared under the same equivalence ratio of total fuel and partial equivalence ratio of n-heptane. The experimental results show that the suppression effectiveness increases in the order MTBE < isopropanol << ethanol < methanol. But ethanol is the best additive when the operating ranges, indicated thermal efficiency, and emissions are considered. For ethanol/n-heptane HCCI combustion, partial combustion may be observed when the mole ratio of ethanol to that of total fuel is larger than 0.20; misfires occur when the mole ratio of ethanol to that of total fuel larger than 0.25. Moreover, CO emissions strongly depend on the maximum combustion temperature, while HC emissions are mainly dominated by the mole ratio of ethanol to that of total fuel. To obtain chemical mechanistic informations relevant to the ignition behavior, detailed chemical kinetic analysis was conducted. The simulated results also confirmed the retarding of the ignition timing by ethanol addition. In addition, it can be found from the simulation that HCHO, CO, and C2H5OH could not be oxidized completely and are maintained at high levels if the partial combustion or misfire occurs (for example, for leaner fuel/air mixture). (c) 2007 Published by Elsevier Inc. on behalf of The Combustion Institute.