화학공학소재연구정보센터
Biotechnology Progress, Vol.23, No.2, 452-457, 2007
Induction of CD40 expression and enhancement of monoclonal antibody production on murine B cell hybridomas by cross-linking of IgG receptors
The 55-6 murine B cell hybridoma line not constitutively expressing CD40 was treated with increasing amounts of intact anti-mouse surface immunoglobulin G antibody (anti-mIgG) either not preincubated or preincubated for 48 h with lipopolysaccharide (LPS). In vitro, cross-linking of surface immunoglobulin G (sIgG) with the whole molecule of anti-IgG antibodies induced the expression of CD69, CD40, and CD19 surface antigens on 55-6 cells. The effect of sIgG ligation was dose-dependent, and preincubation with LPS enhanced their responsiveness to anti-mIgG stimulation. The expression of these surface molecules reached the maximum value during the first part of the cell cycle, corresponding to the position of the G1 peak of the DNA distribution. Stimulation of cells with anti-mIgG did not induce changes either in the number of viable cells or in the fraction of cells undergoing proliferation (mitosis). However, preincubation of 55-6 cells with LPS for 48 h before stimulation with anti-mIgG increased both the maximum specific growth rate (mu(max)) and the percentage of cells in the G2/M phase, in comparison with non-preincubated cells. Moreover, on cells preincubated with LPS prior to anti-mIgG treatment, specific IgG2a production rate was enhanced significantly compared to that obtained in control cultures. The correlation between the antibody production rate and the amount of IgG that is detectable on the cell surface was analyzed by flow cytometry. A good correlation between secreted and surface IgG was observed, and the results of cell cycle analyses demostrated that the 55-6 hybridoma cell line has a substantially higher sIgG content in G1 phase.