Langmuir, Vol.23, No.8, 4662-4668, 2007
Photochemical grafting and activation of organic layers on glassy carbon and pyrolyzed photoresist films
Organic films have been grafted to polished glassy carbon (GC) and as-prepared pyrolyzed photoresist film (PPF) by photolysis of alkenes and an alkyne. The alkene or alkyne is spin-coated onto the carbon surface and photolyzed in air at 254 nm. Characterization by water contact angle measurements, depth profiling and surface roughness measurements using atomic force microscopy (AFM), and electrochemistry reveal that for most modifiers a loosely packed monolayer is grafted to the surface. Grafted layers of 1-decene were further reacted by drop-coating with oxalyl chloride and photolyzing at 254 nm in air. The procedure adds acid chloride groups to the film. Amines were attached to these films via amide bond formation, and were characterized by electrochemistry and assembly of citrate-capped gold nanoparticles. Amines were also coupled to photografted 1-undecylenic acid layers and to carboxyphenyl layers prepared by electroreduction of the corresponding diazonium salt. Quantitative analysis using electrochemistry established that the highest concentration of amines was attached to the oxalyl chloride treated film, and that a higher concentration of amines was attached via reaction with the photografted 1-undecylenic acid layer than the electrografted carboxyphenyl layer. Thus photografting and photoreaction with oxalyl chloride are simple methods for generating amine-reactive tethers on GC and PPF surfaces.