Macromolecular Research, Vol.15, No.6, 491-497, October, 2007
Monte Carlo Simulation of the Molecular Properties of Poly(vinyl chloride) and Poly(vinyl alcohol) Melts
E-mail:
NPT Monte Carlo simulations were performed to calculate the molecular properties of syndiotactic poly(vinyl chloride) (PVC) and syndiotactic poly(vinyl alcohol) (PVA) melts using the configurational bias Monte Carlo move, concerted rotation, reptation, and volume fluctuation. The density, mean square backbone end-to-end distance, mean square radius of gyration, fractional free-volume distribution, distribution of torsional angles, small molecule solubility constant, and radial distribution function of PVC at 0.1 MPa and above the glass transition temperature were calculated/measured, and those of PVA were calculated. The calculated results were compared with the corresponding experimental data and discussed. The calculated densities of PVC and PVA were smaller than the experimental values, probably due to the very low molecular weight of the model polymer used in the simulation. The fractional free-volume distribution and radial distribution function for PVC and PVA were nearly independent of temperature.
- Tanaka G, Mattice WL, Macromolecules, 28(4), 1049 (1995)
- Smith GD, Jaffe RL, Yoon DY, Macromolecules, 26, 298 (1993)
- Neelov I, Niemela S, Sundholm F, J. Non-Cryst. Solids, 235, 340 (1998)
- Neyertz S, Brown D, Clarke JH, J. Chem. Phys., 105(5), 2076 (1996)
- van der Vegt NFA, J. Membr. Sci., 205(1-2), 125 (2002)
- Karlsson GE, Johansson TS, Gedde UW, Hedenqvist MS, J. Macromol. Sci.-Phys., B41, 185 (2002)
- De la Rosa A, Heux L, Cavaille JY, Mazeau K, Polymer, 43(21), 5665 (2002)
- Muller-Plathe F, J. Chem. Phys., 108(19), 8252 (1998)
- Muller-Plathe F, J. Membr. Sci., 141(2), 147 (1998)
- Tamai Y, Tanaka H, Chem. Phys. Lett., 285, 127 (1998)
- Hofmann D, Fritz L, Ulbrich J, Schepers C, Bohning M, Macromol. Theory Simul., 9, 293 (2000)
- Karlsson GE, Gedde UW, Hedenqvist MS, Polymer, 45(11), 3893 (2004)
- Jawalkar SS, Adoor SG, Sairam M, Nadagouda MN, Aminabhavi TM, J. Phys. Chem. B, 109(32), 15611 (2005)
- Frenkel D, Mooij GCAM, Smit B, J. Phys. Condens. Matter, 4, 3053 (1992)
- Laso M, de Pablo JJ, Suter UW, J. Chem. Phys., 97, 2817 (1992)
- Dodd LR, Boone TD, Theodorou DN, Mol. Phys., 78, 961 (1993)
- Wu MG, Deem MW, Mol. Phys., 97, 559 (1999)
- Mavrantzas VG, Boone TD, Zervopoulou E, Theodorou DN, Macromolecules, 32(15), 5072 (1999)
- Pant PV, Theodorou DN, Macromolecules, 28(21), 7224 (1995)
- Karayiannis NC, Mavrantzas VG, Theodorou DN, Phys. Rev. Lett., 88, 105503 (2002)
- Karayiannis NC, Giannousaki AE, Mavrantzas VG, Theodorou DN, J. Chem. Phys., 117(11), 5465 (2002)
- Faller R, Muller-Plathe F, Doxastakis M, Theodorou D, Macromolecules, 34(5), 1436 (2001)
- Doxastakis M, Mavrantzas VG, Theodorou DN, J. Chem. Phys., 115(24), 11339 (2001)
- Gestoso P, Nicol E, Doxastakis M, Theodorou DN, Macromolecules, 36(18), 6925 (2003)
- Smith GD, Ludovice PJ, Jaffe RL, Yoon DY, J. Phys. Chem., 99(1), 164 (1995)
- Mullerplathe F, Vangunsteren WF, Polymer, 38(9), 2259 (1997)
- Zervopoulou E, Mavrantzas VG, Theodorou DN, J. Chem. Phys., 115(6), 2860 (2001)
- Cabral BJC, Rivail JL, Bigot B, J. Chem. Phys., 86, 1467 (1987)
- Martin MG, Siepmann JI, J. Phys. Chem. B, 103(21), 4508 (1999)
- Allen MP, Tildesley DJ, in Computer Simulation of Liquids, Clarendon, Oxford (1987)
- Zoller P, Walsh DJ, in Standard Pressure-Volume-Temperature Data for Polymers, Technomic, Lancaster (1995)
- Misra S, Mattice WL, Macromolecules, 26(26), 7274 (1993)
- Vandervegt NF, Briels WJ, Wessling M, Strathmann H, J. Chem. Phys., 105(19), 8849 (1996)