화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.18, No.5, 467-474, October, 2007
팔라듐과 금 나노입자를 첨착한 PAN계 활성탄소섬유의 SO2 흡착특성
SO2 Adsorption Characteristics of PAN-based Activated Carbon Fiber Impregnated with Palladium and Gold Nanoparticles
E-mail:
초록
팔라듐과 금 나노입자 등이 첨착된 높은 비표면적을 갖는 Polyacrylonitrile (PAN)계 활성탄소섬유(ACF: Activated Carbon Fiber)를 제조하였다. 여러 첨착 ACF에 대하여 BET, FE-SEM, TEM, XPS 등으로 비표면적과 기공부피, 미세구조, 시간에 따른 산소관능기의 표면변화를 관찰하였으며 SO2에 대한 흡착성능을 연구하였다. 그 결과 첨착과정으로 인하여 총 기공부피 대비 미세기공 부피는 95.5%에서 30.5∼43.7%로 대부분 감소하였으며, 산소관능기의 표면변화는 대기중에서 시간이 경과함에 따라 나노입자보다 금속염의 산소관능기 변화가 컸음을 알 수 있었다. 또한 Au 나노입자와 금속염을 첨착한 ACF의 SO2 파과시간은 무첨착 ACF에 비하여 크게 변하지 않았으나, 100 ppm의 Pd 나노입자를 첨착한 ACF는 SO2 파과시간이 880 s로 흡착성능이 우수하였다. 이러한 결과로 볼 때 SO2 흡착성능은 시간에 따른 산소관능기의 표면 변화와 연관성이 있다고 볼 수 있으며, PAN계 활성탄소섬유에 적정한 농도의 Pd 나노입자 첨착은 촉매작용으로 인하여 SO2 흡착 성능을 증가시키는 것으로 판단된다.
The palladium and gold nanoparticles containing PAN-based active carbon fiber (ACF) with a high specific surface area were prepared. Using the BET, TEM, FE-SEM, and XPS, their specific surface area and pore volume, pore structure, and the change in surface oxygen groups with time were analyzed and SO2 adsorption performances were investigated. Because of the impregnating process, the micropore volume was mostly decreased from 95.5% to 30.5∼43.7% compared with the total pore volume. And the change in surface oxygen groups with time was higher for the metal salt than the nanoparticles. Also, SO2 breakthrough time of PAN-ACFs impregnated with Au nanoparticles and metal salts did not change compared with that of the non-impregnated PAN-ACF. But the PAN-ACF impregnated with Pd nanoparticles (100 ppm) showed good SO2 adsorption performance as the breakthrough time of 880 sec. These results indicated that the SO2 adsorption performance depended on the change in surface oxygen groups with time and the moderate impregnation of Pd nanoparticles on the PAN-ACF caused the increase in the SO2 adsorption performance by a catalytic action.
  1. Carabineiro SAC, Ramos AM, Vital J, Loureiro JM, Orfao JJM, Fonseca IM, Catal. Today, 78(1-4), 203 (2003)
  2. Chary KVR, Naresh D, Vishwanathan V, Sadakane M, Ueda W, Catal. Commun., 8, 471 (2007)
  3. Ryu SK, Kim SY, Gallege N, Edie DD, Carbon, 37, 1619 (1999)
  4. Suzuki M, Carbon, 32, 577 (1994)
  5. Suzuki M, Adsortion Engineering, ed. J. Y. Son, 1, 24, Hyung sul, Seoul (2000)
  6. Martin-Gullon I, Andrews R, Jagtoyen M, Derbyshire F, Fuel, 80, 969 (2001)
  7. Auer E, Freund A, Pietsch J, Tacke T, Appl. Catal. A: Gen., 173(2), 259 (1998)
  8. Prati L, Martra G, Gold Bul, 32, 96 (1999)
  9. Bianchi C, Porta F, Prati L, Rossi M, Top. Catal., 13, 231 (2000)
  10. Kisamori S, Mochida I, Fujitsu H, Langmuir, 10(4), 1241 (1994)
  11. Raymundo-Pinero E, Cazorla-Amoros D, Linares-Solano A, Carbon, 39, 231 (2001)
  12. Kisamori S, Kuroda K, Kawano S, Mochida I, Matsumura Y, Yoshikawa M, Energy Fuels, 8(6), 1337 (1994)
  13. Bulushev DA, Yuranov I, Suvorova EI, Buffat PA, Kiwi-Minsker L, J. Catal., 224(1), 8 (2004)
  14. Bashir Z, Carbon, 29, 181 (1991)
  15. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
  16. Khalili NR, Campbell M, Sandi G, Golas J, Carbon, 38, 1905 (2000)
  17. Park SJ, Kim BJ, Kawasaki J, HWAHAK KONGHAK, 41(6), 795 (2003)
  18. Brunauer S, Deming LS, Deming WS, Teller E, J. Am. Chem. Soc., 62, 1723 (1940)
  19. Park SJ, Kim KD, Carbon, 39, 1741 (2001)
  20. Do DD, Adsorption analysis; Equilibria and kinetics, Imperial College Press, London (1998)
  21. Matatov-Meytal U, Sheintuch M, Catal. Today, 102, 121 (2005)