Journal of the American Chemical Society, Vol.129, No.10, 2989-2997, 2007
Electrostatic properties of adsorbed polar molecules: Opposite behavior of a single molecule and a molecular monolayer
We compare the electrostatic behavior of a single polar molecule adsorbed on a solid substrate with that of an adsorbed polar monolayer. This is accomplished by comparing first principles calculations obtained within a cluster model and a periodic slab model, using benzene derivatives on the Si(111) surface as a representative test case. We find that the two models offer diametrically opposite descriptions of the surface electrostatic phenomena. Slab electrostatics is dominated by dipole reduction due to intermolecular dipole-dipole interactions that partially depolarize the molecules, with charge migration to the substrate playing a negligible role due to electric field suppression outside the monolayer. Conversely, cluster electrostatics is dominated by dipole enhancement due to charge migration to/from the substrate, with only a small polarization of the molecule. This establishes the important role played by long-range interactions, in addition to local chemical properties, in tailoring surface chemistry via polar molecule adsorption.